Post Buy Requirement
AM
United States
Add Review

Other Products / Services

Aluminium Bauxite

  • Type High quality aluminum Ore
  • Min. Order Quantity As per client requirement
  • Features Purity., Perfect formulation

Aluminium or aluminum (see below) is a chemical element with symbol Al and atomic number 13. It is a silvery-white, soft, nonmagnetic, ductile metal in the boron group. By mass, aluminium makes up about 8% of the Earth's crust; it is the third most abundant element after oxygen and silicon and the most abundant metal in the crust, though it is less common in the mantle below. Aluminium metal is so chemically reactive that native specimens are rare and limited to extreme reducing environments. Instead, it is found combined in over 270 different minerals.[7] The chief ore of aluminium is bauxite. Aluminium is remarkable for the metal's low density and its ability to resist corrosion through the phenomenon of passivation. Aluminium and its alloys are vital to the aerospace industry[8] and important in transportation and building industries, such as building facades and window frames.[9] The oxides and sulfates are the most useful compounds of aluminium.[8] Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically, but aluminium is well tolerated by plants and animals.[10] Because of these salts' abundance, the potential for a biological role for them is of continuing interest, and studies continue.

View Complete Details

Halides

Four dihalides of cobalt(II) are known: cobalt(II) fluoride (CoF2, pink), cobalt(II) chloride (CoCl2, blue), cobalt(II) bromide (CoBr2, green), cobalt(II) iodide (CoI2, blue-black). These halides exist in anhydrous and hydrated forms. Whereas the anhydrous dichloride is blue, the hydrate is red.[15]

The reduction potential for the reaction Co3+
+ e Co2+
is +1.92 V, beyond that for chlorine to chloride, +1.36 V. Consequently, cobalt(III) and chloride would result in the cobalt(III) being reduced to cobalt(II). Because the reduction potential for fluorine to fluoride is so high, +2.87 V, cobalt(III) fluoride is one of the few simple stable cobalt(III) compounds. Cobalt(III) fluoride, which is used in some fluorination reactions, reacts vigorously with water.[10]

Coordination compounds
As for all metals, molecular compounds and polyatomic ions of cobalt are classified as coordination complexes, that is, molecules or ions that contain cobalt linked to several ligands. The principles of electronegativity and hardnesssoftness of a series of ligands can be used to explain the usual oxidation state of cobalt. For example, Co+3 complexes tend to have ammine ligands. Because phosphorus is softer than nitrogen, phosphine ligands tend to feature the softer Co2+ and Co+, an example being tris(triphenylphosphine)cobalt(I) chloride ((P(C6H5)3)3CoCl). The more electronegative (and harder) oxide and fluoride can stabilize Co4+ and Co5+ derivatives, e.g. caesium hexafluorocobaltate (Cs2CoF6) and potassium percobaltate (K3CoO4).[10]

Alfred Werner, a Nobel-prize winning pioneer in coordination chemistry, worked with compounds of empirical formula [Co(NH3)6]Cl3. One of the isomers determined was cobalt(III) hexammine chloride. This coordination complex, a typical Werner-type complex, consists of a central cobalt atom coordinated by six ammine orthogonal ligands and three chloride counteranions. Using chelating ethylenediamine ligands in place of ammonia gives tris(ethylenediamine)cobalt(III) chloride ([Co(en)3]Cl3), which was one of the first coordination complexes to be resolved into optical isomers. The complex exists in the right- and left-handed forms of a "three-bladed propeller". This complex was first isolated by Werner as yellow-gold needle-like crystals.[16][17]

Organometallic compounds
Main article: Organocobalt chemistry
Cobaltocene is a structural analog to ferrocene with cobalt in place of iron. Cobaltocene is much more sensitive to oxidation than ferrocene.[18] Cobalt carbonyl (Co2(CO)8) is a catalyst in carbonylation and hydrosilylation reactions.[19] Vitamin B12 (see below) is an organometallic compound found in nature and is the only vitamin that contains a metal atom.[20]
View Complete Details

Invar

Invar, also known generically as FeNi36 (64FeNi in the US), is a nickeliron alloy notable for its uniquely low coefficient of thermal expansion (CTE or ). The name Invar comes from the word invariable, referring to its relative lack of expansion or contraction with temperature changes.[1]

It was invented in 1896 by Swiss physicist Charles douard Guillaume. He received the Nobel Prize in Physics in 1920 for this discovery, which enabled improvements in scientific instruments.[2]

Contents [hide]
1 Properties
2 Applications
3 Variations
4 Explanation of anomalous properties
5 See also
6 References
7 External links
Properties[edit]

Samples of Invar
Like other nickeliron compositions, Invar is a solid solution; that is, it is a single-phase alloy, consisting of around 36% nickel and 64% iron.

Common grades of Invar have a coefficient of thermal expansion (denoted , and measured between 20 C and 100 C) of about 1.2 106 K1 (1.2 ppmC), while ordinary steels have values of around 1115 ppm. Extra-pure grades (
View Complete Details

Cobalt

Cobalt is a chemical element with symbol Co and atomic number 27. Like nickel, cobalt is found in the Earth's crust only in chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal.

Cobalt-based blue pigments (cobalt blue) have been used since ancient times for jewelry and paints, and to impart a distinctive blue tint to glass, but the color was later thought by alchemists to be due to the known metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue-pigment producing minerals; they were so named because they were poor in known metals, and gave poisonous arsenic-containing fumes upon smelting. In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), and this was ultimately named for the kobold.

Today, some cobalt is produced specifically from various metallic-lustered ores, for example cobaltite (CoAsS), but the main source of the element is as a by-product of copper and nickel mining. The copper belt in the Democratic Republic of the Congo, Central African Republic and Zambia yields most of the cobalt mined worldwide.

Cobalt is primarily used in the preparation of magnetic, wear-resistant and high-strength alloys. The compounds, cobalt silicate and cobalt(II) aluminate (CoAl2O4, cobalt blue) give a distinctive deep blue color to glass, ceramics, inks, paints and varnishes. Cobalt occurs naturally as only one stable isotope, cobalt-59. Cobalt-60 is a commercially important radioisotope, used as a radioactive tracer and for the production of high energy gamma rays.

Cobalt is the active center of coenzymes called cobalamins, the most common example of which is vitamin B12. As such, it is an essential trace dietary mineral for all animals. Cobalt in inorganic form is also a micronutrient for bacteria, algae and fungi.
View Complete Details

Niobium

Niobium, formerly columbium, is a chemical element with symbol Nb (formerly Cb) and atomic number 41. It is a soft, grey, ductile transition metal, which is often found in the pyrochlore mineral, the main commercial source for niobium, and columbite. Its name comes from Greek mythology, specifically Niobe, who was the daughter of Tantalus, the namesake of tantalum. The name reflects the great similarity between the two elements in their physical and chemical properties, making them difficult to distinguish.[2]

The English chemist Charles Hatchett reported a new element similar to tantalum in 1801 and named it columbium. In 1809, the English chemist William Hyde Wollaston wrongly concluded that tantalum and columbium were identical. The German chemist Heinrich Rose determined in 1846 that tantalum ores contain a second element, which he named niobium. In 1864 and 1865, a series of scientific findings clarified that niobium and columbium were the same element (as distinguished from tantalum), and for a century both names were used interchangeably. Niobium was officially adopted as the name of the element in 1949, but the name columbium remains in current use in metallurgy in the United States.

It was not until the early 20th century that niobium was first used commercially. Brazil is the leading producer of niobium and ferroniobium, an alloy of niobium and iron which has a niobium content of 60-70%. Niobium is used mostly in alloys, the largest part in special steel such as that used in gas pipelines. Although these alloys contain a maximum of 0.1%, the small percentage of niobium enhances the strength of the steel. The temperature stability of niobium-containing superalloys is important for its use in jet and rocket engines.

Niobium is used in various superconducting materials. These superconducting alloys, also containing titanium and tin, are widely used in the superconducting magnets of MRI scanners. Other applications of niobium include welding, nuclear industries, electronics, optics, numismatics, and jewelry. In the last two applications, the low toxicity and iridescence produced by anodization are highly desired properties.
View Complete Details

Isotopes

Main article: Isotopes of cobalt
59Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. There are 22 radioisotopes that have been characterized, the most stable being 60Co with a half-life of 5.2714 years, 57Co with a half-life of 271.8 days, 56Co with a half-life of 77.27 days, and 58Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are shorter than 18 hours, and the majority of these are shorter than 1 second. This element also has 4 meta states, all of which have half-lives shorter than 15 minutes.[21]

The isotopes of cobalt range in atomic weight from 50 u (50Co) to 73 u (73Co). The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59Co are element 26 (iron) isotopes and the primary products after are element 28 (nickel) isotopes.[21]

History
cobalt blue Chinese porcelain
Early Chinese blue and white porcelain, manufactured c. 1335
Cobalt compounds have been used for centuries to impart a rich blue color to glass, glazes, and ceramics. Cobalt has been detected in Egyptian sculpture and Persian jewelry from the third millennium BC, in the ruins of Pompeii (destroyed in 79 AD), and in China dating from the Tang dynasty (618907 AD) and the Ming dynasty (13681644 AD).[22]

Cobalt has been used to color glass since the Bronze Age. The excavation of the Uluburun shipwreck yielded an ingot of blue glass, cast during the 14th century BC.[23][24] Blue glass items from Egypt are colored with copper, iron, or cobalt. The oldest cobalt-colored glass is from the Eighteenth dynasty in Egypt (15501292 BC). The source of that cobalt is unknown.[25][26]

The word cobalt is derived from the German kobalt, from kobold meaning "goblin", a superstitious term used for the ore of cobalt by miners. The first attempts to smelt those ores for copper or nickel failed, yielding simply powder (cobalt(II) oxide) instead. Because the primary ores of cobalt always contain arsenic, smelting the ore oxidized the arsenic into the highly toxic and volatile arsenic oxide, adding to the notoriety of the ore.[27]

Swedish chemist Georg Brandt (16941768) is credited with discovering cobalt circa 1735, showing it to be a previously unknown element, different from bismuth and other traditional metals. Brandt called it a new "semi-metal."[28][29] He showed that compounds of cobalt metal were the source of the blue color in glass, which previously had been attributed to the bismuth found with cobalt. Cobalt became the first metal to be discovered since the pre-historical period, during which all the known metals (iron, copper, silver, gold, zinc, mercury, tin, lead and bismuth) had no recorded discoverers.[30]

During the 19th century, a significant part of the world's production of cobalt blue (a dye made with cobalt compounds and alumina) and smalt (cobalt glass powdered for use for pigment purposes in ceramics and painting) was carried out at the Norwegian Blaafarvevrket.[31][32] The first mines for the production of smalt in the 16th century were located in Norway, Sweden, Saxony and Hungary. With the discovery of cobalt ore in New Caledonia in 1864, the mining of cobalt in Europe declined. With the discovery of ore deposits in Ontario, Canada in 1904 and the discovery of even larger deposits in the Katanga Province in the Congo in 1914, the mining operations shifted again.[27] When the Shaba conflict started in 1978, the copper mines of Katanga Province nearly stopped production.[33][34] The impact on the world cobalt economy from this conflict was smaller than expected: cobalt is a rare metal, the pigment is highly toxic, and the industry had already established effective ways for recycling cobalt materials. In some cases, industry was able to change to cobalt-free alternatives.[33][34]In 1938, John Livingood and Glenn T. Seaborg discovered the radioisotope cobalt-60.[35] This isotope was famously used at Columbia University in the 1950s to establish parity violation in radioactive beta decay.[36][37]

After World War II, the US wanted to guaranteed the supply of cobalt ore for military uses (as the Germans had been doing) and prospected for cobalt within the U.S. border. An adequate supply of the ore was found in Idaho near Blackbird canyon in the side of a mountain. The firm Calera Mining Company started production at the site.[38]
View Complete Details

Beryllium

Beryllium is a chemical element with symbol Be and atomic number 4. It is a relatively rare element in the universe, usually occurring as a product of the spallation of larger atomic nuclei that have collided with cosmic rays. Within the cores of stars beryllium is depleted as it is fused and creates larger elements. It is a divalent element which occurs naturally only in combination with other elements in minerals. Notable gemstones which contain beryllium include beryl (aquamarine, emerald) and chrysoberyl. As a free element it is a steel-gray, strong, lightweight and brittle alkaline earth metal.

Beryllium improves many physical properties when added as an alloying element to aluminium, copper (notably the alloy beryllium copper), iron and nickel.[5] Beryllium does not form oxides until it reaches very high temperatures. Tools made of beryllium copper alloys are strong and hard and do not create sparks when they strike a steel surface. In structural applications, the combination of high flexural rigidity, thermal stability, thermal conductivity and low density (1.85 times that of water) make beryllium metal a desirable aerospace material for aircraft components, missiles, spacecraft, and satellites.[5] Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and other forms of ionizing radiation; therefore, it is the most common window material for X-ray equipment and components of particle detectors.[5] The high thermal conductivities of beryllium and beryllium oxide have led to their use in thermal management applications.

The commercial use of beryllium requires the use of appropriate dust control equipment and industrial controls at all times because of the toxicity of inhaled beryllium-containing dusts that can cause a chronic life-threatening allergic disease in some people called berylliosis.[6]
View Complete Details

Alloy Steel

Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low-alloy steels and high-alloy steels. The difference between the two is somewhat arbitrary: Smith and Hashemi define the difference at 4.0%, while Degarmo, et al., define it at 8.0%.[1][2] Most commonly, the phrase "alloy steel" refers to low-alloy steels.

Strictly speaking, every steel is an alloy, but not all steels are called "alloy steels". The simplest steels are iron (Fe) alloyed with carbon (C) (about 0.1% to 1%, depending on type). However, the term "alloy steel" is the standard term referring to steels with other alloying elements added deliberately in addition to the carbon. Common alloyants include manganese (the most common one), nickel, chromium, molybdenum, vanadium, silicon, and boron. Less common alloyants include aluminum, cobalt, copper, cerium, niobium, titanium, tungsten, tin, zinc, lead, and zirconium.

The following is a range of improved properties in alloy steels (as compared to carbon steels): strength, hardness, toughness, wear resistance, corrosion resistance, hardenability, and hot hardness. To achieve some of these improved properties the metal may require heat treating.

Some of these find uses in exotic and highly-demanding applications, such as in the turbine blades of jet engines, in spacecraft, and in nuclear reactors. Because of the ferromagnetic properties of iron, some steel alloys find important applications where their responses to magnetism are very important, including in electric motors and in transformers.
View Complete Details

Carbon Steel

From Wikipedia, the free encyclopedia
Steels and other ironcarbon alloy phases
FagerstaRA2.jpg
Ferrite Austenite Cementite Graphite Martensite
Microstructures
Spheroidite Pearlite Bainite Ledeburite Tempered martensite Widmanstatten structures
Classes
Crucible steel Carbon steel Spring steel Alloy steel Maraging steel Stainless steel Weathering steel Tool steel
Other iron-based materials
Cast iron Gray iron White iron Ductile iron Malleable iron Wrought iron
v t e
Carbon steel is a steel with carbon content up to 2.1% by weight. American Iron and Steel Institute (AISI) definition of Carbon Steel states:

Steel is considered to be carbon steel when:
no minimum content is specified or required for chromium, cobalt, molybdenum, nickel, niobium, titanium, tungsten, vanadium or zirconium, or any other element to be added to obtain a desired alloying effect;
the specified minimum for copper does not exceed 0.40 percent;
or the maximum content specified for any of the following elements does not exceed the percentages noted: manganese 1.65, silicon 0.60, copper 0.60.[1]
The term "carbon steel" may also be used in reference to steel which is not stainless steel; in this use carbon steel may include alloy steels.

As the carbon percentage content rises, steel has the ability to become harder and stronger through heat treating; however, it becomes less ductile. Regardless of the heat treatment, a higher carbon content reduces weldability. In carbon steels, the higher carbon content lowers the melting point.[2]
View Complete Details
Tell Us What are you looking for? Will call you back

Contact Us

  • (All Metal Sales, Inc.)
  • Cleveland, OH 44145 map, United States
  • Share us via

( ! ) Warning: Cannot modify header information - headers already sent by (output started at /htmlcachedir2/dynamic-html-pages/eitempfilen/usa/company/all-metal-sales-inc-company5143699/other-products.htm:44) in /home/sgupta/exportersindia.com/htdocs/script-files/company-page/index.php on line 59
Call Stack
#TimeMemoryFunctionLocation
10.0012457992{main}( ).../index.php:0
20.02882031536include_once( '/home/sgupta/exportersindia.com/htdocs/script-files/country-vanity/country_index_page_common_script.php' ).../index.php:309
30.07172754240include_once( '/home/sgupta/exportersindia.com/htdocs/script-files/company-page/index.php' ).../country_index_page_common_script.php:282
40.08113689952header ( ).../index.php:59
ExportersIndia: 404 Error Found
404Oops! It seems this page is not available

We connect Buyers and Sellers

Tell us What you Need

Trending Categories

Find Suppliers by Region


View All Categories

Find Suppliers by Country

Waiting for permission
To search by voice, go to your browser settings and allow access to microphone

Allow microphone access to search with voice